Post

TableInUseException in AWS DynamoDB: Handling Concurrent Access to Tables

DynamoDB, one of the most popular NoSQL databases provided by Amazon Web Services (AWS), offers a highly scalable and performant solution for managing large amounts of data. However, when multiple clients access the same table simultaneously, conflicts can arise, resulting in an exception known as TableInUseException. In this article, we will explore this exception in detail, understand its causes, and learn how to handle it effectively.

Introduction

In highly concurrent environments, where multiple clients simultaneously access the same DynamoDB table, conflicts and contention can occur. AWS DynamoDB ensures data consistency and isolation by employing mechanisms such as optimistic locking and conditional writes. However, under certain conditions, when these mechanisms fail to prevent conflicts, the TableInUseException is thrown.

Understanding TableInUseException

The com.amazonaws.services.dynamodbv2.model.TableInUseException is an exception class that indicates the specific DynamoDB table is already being used or modified by another operation. This exception occurs when a client attempts to perform write or delete operations on a table that is already locked or being modified.

Causes of TableInUseException

Several scenarios can lead to a TableInUseException:

  1. Concurrent Modification: When multiple clients concurrently attempt to modify the same item in a table, one client may acquire a lock while others wait. The waiting clients may receive a TableInUseException if the maximum wait time exceeds the threshold.

  2. Cluster Resharding: During cluster resharding, when the table’s hash key or hash range changes, DynamoDB may temporarily lock the table to ensure consistent data migration. Any attempt to access the table during this process can result in a TableInUseException.

  3. Throttling: When AWS DynamoDB experiences high load or receives a large number of requests, it may throttle some requests to maintain performance and prevent overload. In such cases, clients may observe a TableInUseException if the request is throttled.

Code Example: Simulating a TableInUseException

Here is an example demonstrating how to simulate a TableInUseException in DynamoDB:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.model.*;

public class TableInUseExceptionExample {
  
    public static void main(String[] args) {
        AmazonDynamoDB dynamoDBClient = new AmazonDynamoDBClient();
        CreateTableRequest createTableRequest = new CreateTableRequest()
            .withTableName("myTable")
            .withAttributeDefinitions(new AttributeDefinition("id", ScalarAttributeType.N))
            .withKeySchema(new KeySchemaElement("id", KeyType.HASH))
            .withProvisionedThroughput(new ProvisionedThroughput(10L, 10L));

        try {
            dynamoDBClient.createTable(createTableRequest);
            dynamoDBClient.createTable(createTableRequest); // Simulating concurrent create
        } catch (TableInUseException e) {
            System.out.println("TableInUseException thrown: " + e.getMessage());
        }
    }
}

Handling TableInUseException

To handle TableInUseException effectively, we need to employ various techniques such as exponential backoff, optimistic locking, and retrying with conditional writes.

1. Exponential Backoff and Jitter

Exponential backoff is a widely used technique that involves progressively increasing the wait time between retry attempts to avoid excessive load on the system. Additionally, the addition of jitter to the formula helps to further distribute the retry requests, reducing the chances of simultaneous retries.

2. Optimistic Locking

Optimistic locking is a concurrency control technique that allows multiple clients to access the same data simultaneously with the assumption that conflicts are rare. Each client reads the data and stores a version identifier. When updating the data, the client checks if the version identifier matches the one stored during the read operation. If the versions match, the update proceeds; otherwise, a conflict occurred, and the client can take appropriate action.

Code Example: Handling TableInUseException with Optimistic Locking

Consider the following code snippet demonstrating how optimistic locking can be used to handle TableInUseException:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.model.*;

public class OptimisticLockingExample {
  
    public static void updateItemWithLock(AmazonDynamoDB dynamoDBClient, String tableName, String itemId) {
        GetItemRequest getItemRequest = new GetItemRequest()
            .withTableName(tableName)
            .withKey(Collections.singletonMap("id", new AttributeValue().withN(itemId)))
            .withConsistentRead(true);
            
        GetItemResult getItemResult = dynamoDBClient.getItem(getItemRequest);
        AttributeValue versionAttributeValue = getItemResult.getItem().get("version");
        long currentVersion = Long.parseLong(versionAttributeValue.getN());
        
        Map<String, AttributeValueUpdate> updateValues = new HashMap<>();
        updateValues.put(":newVersion", new AttributeValueUpdate().withValue(new AttributeValue().withN(Long.toString(currentVersion + 1))));
        
        UpdateItemRequest updateItemRequest = new UpdateItemRequest()
            .withTableName(tableName)
            .withKey(Collections.singletonMap("id", new AttributeValue().withN(itemId)))
            .withAttributeUpdates(updateValues)
            .withExpected(Collections.singletonMap("version", new ExpectedAttributeValue().withValue(versionAttributeValue)));
            
        try {
            dynamoDBClient.updateItem(updateItemRequest);
        } catch (ConditionalCheckFailedException e) {
            // Handle conflict
        }
    }
}

3. Retrying with Conditional Writes

AWS DynamoDB provides a built-in support for conditional writes, which enables the condition to be checked before executing a write operation. By retrying the write operation with conditions, clients can handle the TableInUseException effectively.

Code Example: Retrying with Conditional Writes

Here is an example demonstrating how to retry write operations with conditional writes to handle TableInUseException:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.model.*;

public class ConditionalWritesExample {
  
    public static void retryWriteWithCondition(AmazonDynamoDB dynamoDBClient, String tableName, String itemId) {
        Map<String, AttributeValue> itemKey = Collections.singletonMap("id", new AttributeValue().withN(itemId));
        
        Map<String, AttributeValue> updateValues = Collections.singletonMap("status", new AttributeValue().withS("processed"));
        
        UpdateItemRequest updateItemRequest = new UpdateItemRequest()
            .withTableName(tableName)
            .withKey(itemKey)
            .withAttributeUpdates(updateValues)
            .withConditionExpression("attribute_not_exists(status)");

        try {
            dynamoDBClient.updateItem(updateItemRequest);
        } catch (ConditionalCheckFailedException e) {
            // Retry the write operation
        }
    }
}

Conclusion

The TableInUseException, though rare, can occur in AWS DynamoDB when multiple clients concurrently access the same table. By understanding its causes and employing techniques such as exponential backoff, optimistic locking, and conditional writes, clients can effectively handle this exception and maintain data consistency and integrity.

In this article, we explored the TableInUseException in detail, discussed its causes, and provided code examples demonstrating how to handle it. By following the best practices outlined here, you can ensure smooth and reliable access to your DynamoDB tables even under heavy concurrent workloads.

References


This post is licensed under CC BY 4.0 by the author.